

PCAT^{Q&As}

Pharmacy College Admission Test

Pass PCAT PCAT Exam with 100% Guarantee

Free Download Real Questions & Answers PDF and VCE file from:

https://www.passapply.com/pcat.html

100% Passing Guarantee 100% Money Back Assurance

Following Questions and Answers are all new published by PCAT
Official Exam Center

- Instant Download After Purchase
- 100% Money Back Guarantee
- 365 Days Free Update
- 800,000+ Satisfied Customers

QUESTION 1

In animals, consuming glucose causes insulin release from the pancreas, which causes the liver and muscles to take in glucose from the blood stream. This is an example of:

- A. Thermoregulation
- B. Negative feedback
- C. Receptor feedback
- D. Circulatory feedback
- E. Positive feedback

Correct Answer: B

In negative feedback, when a pathway\\'s output (increased blood glucose) exceeds normal limits, a mechanism is activated that reduces inputs to the pathway (reduction of blood glucose). Conditions are monitored by a control center, and when homeostasis returns, the corrective action is discontinued.

QUESTION 2

What is the probability of rolling a prime number in each roll in 4 consecutive rolls of a 6 sided die?

- A. 1/4
- B. 1/8
- C. 1/16
- D. 1/32

Correct Answer: C

The prime numbers in the range are: 2, 3, 5. On any roll, the probability of rolling a prime number is:

$$\frac{(3 \, primes)}{(6 \, total)} = \frac{1}{2}$$

The probability of rolling this 4 times in a row is:

$$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{16}$$

QUESTION 3

The hybridization of the oxygen in CO2 is:

https://www.passapply.com/pcat.html 2024 Latest passapply PCAT PDF and VCE dumps Download

A. s
B. sp
C. sp2
D. sp3
Correct Answer: C
QUESTION 4
If the pl of a specific protein is 6, what is the charge on the protein when it is in a solution of pH 9?
A.
B. 0
C. +
D. Cannot be determined.
Correct Answer: A
The pl, or the isoelectric point, is the pH at which a molecule exhibits a net charge of 0. When the pl of a molecule is less than the pH of the surrounding solution, the molecule is deprotonated and its charge is negative. The 3 situations:
pH pI = deprotonated (- charge) pH = pI = neutral charge.
QUESTION 5
What is the osmotic pressure of a 2M NaCl solution at 0 degrees C?
A. 44.8 atm
B. 45.5 atm
C. 0 atm
D. 97 atm
Correct Answer: A
Calculate osmotic pressure using: $? = MRT$, where $?$ is pressure, M is the molar concentration of the dissolved solution, R is the ideal gas constant (0.08206 L atm mol?1 K?1), and T is temperature in Kelvins. Substituting and solving: $? = 2 \times 0.08206 \times 273.15 = 44.8$ atm.

PCAT VCE Dumps

PCAT PDF Dumps

PCAT Braindumps