GMAT-QUANTITIVE ${ }^{\text {Q\&As }}$

GMAT-Quantitive Practice Test

Pass Admission Test GMAT-QUANTITIVE Exam with 100\% Guarantee

Free Download Real Questions \& Answers PDF and VCE file from:
https://www.passapply.com/gmat-quantitive.html

100\% Passing Guarantee
100\% Money Back Assurance

Following Questions and Answers are all new published by Admission Test Official Exam Center

(o.) Instant Download After Purchase
 (\%) 100\% Money Back Guarantee
 (o) 365 Days Free Update

QUESTION 1

Jennifer bought two apartments in order to rent them to other people with $\$ 300,000$. The monthly return on the first apartment is 1.5% of its value and on the second apartment the return is 2% of its value. If the total returns of the entire year were $\$ 61,200$, how much did Jennifer spent on the second apartment?
A. $\$ 100,000$
B. $\$ 120,000$
C. $\$ 150,000$
D. $\$ 180,000$ E. $\$ 210,000$

Correct Answer: B

The easiest way is to back solve the question.
Take answer B, if that is the amount Jennifer invested in the second apartment; the annual return from that apartment was $(120,000 \times 0.24=28,800)$. Therefore there are $\$ 180,000$ left to invest in the first apartment, 18% of $\$ 180,000$ is $\$ 32,400$.

Sum them up; the total return is like the question asked- $\$ 61,200$.

QUESTION 2

A fence has a square gate. What is the height of the gate?
(1)

The width of the gate is 30 inches.
(2)

The length of the diagonal brace of the gate is 30

$\sqrt{2}$

inches.
A. Statement (1), BY ITSELF, will suffice to solve the problem, but NOT statement (2) by itself.
B. Statement (2), BY ITSELF, will suffice to solve the problem, but NOT statement (1) by itself.
C. The problem can be solved using statement (1) and statement (2) TOGETHER, but not ONLY statement (1) or statement (2).
D. The problem can be solved using EITHER statement (1) only or statement (2) only.
E. The problem CANNOT be solved using statement (1) and statement (2) TOGETHER.

Correct Answer: D

$\sqrt{2}$

Knowing that the gate is square and the diagonal is 30
$\sqrt{2}$
, the Pythagorean theorem can be used with x as the side of the square. $\mathrm{x} 2+\mathrm{x} 2=(30$
)2. Or you may recall that the length of a leg will
$\frac{302 \overline{2}}{2 \overline{2}}=30$
be because it is an isosceles triangle. Thus, statement (2) is sufficient. Since statement (1) gives the width and the gate is a square, then the height is the same as the width. Either statement is sufficient.

QUESTION 3

If a, b, c and d are consecutive integers (a

